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LETTER TO THE EDITOR 

On a random process interpolating between Markovian and 
non-Markovian random walks 

D Y C Chan and B D Hughes 
Department of Applied Mathematics, Research School of Physical Sciences, Australian 
National University, Canberra, ACT 2600 Australia 

Received 25 November 1983 

Abstract. We give the exact solution in one dimension of the continuum analogue of a 
model of Stanley er al which interpolates between Markovian (P6lya) and self-avoiding 
random walks on lattices, and make some heuristic comments on the nature of phase 
transitions in the model in higher dimensions. 

Probabilistic lattice models are gaining increasing importance in a wide variety of 
problems in physics, with perhaps the most important such models being the Markovian 
random walk (Weiss and Rubin 1983, Hughes and Prager 1983), the self-avoiding 
walk (Barber and Ninham 1970, Hughes and Prager 1983), and percolation theory 
(Deutscher et a1 1983, Hughes and Ninham 1983). It has been shown by Domb and 
Joyce (1972) that if multiple visits to individual sites are assigned an energy penalty, 
a model may be constructed which interpolates between the ordinary Markovian walk 
of Pblya type (unbiased motion, with only nearest-neighbour transitions) and the 
self-avoiding walk. Recently, Stanley et a1 (1983) have proposed an alternative scheme 
for interpolation between Pblya walks and self-avoiding of self-attracting walks. They 
give numerical evidence (drawn from series analyses and Monte Carlo simulations) 
which suggests that their model possesses ‘super-universal’ lattice- and dimension- 
independent properties, and that it is related to percolation theory. In this letter we 
give the exact solution of the continuum analogue of their model in one dimension, 
and make some general observations about their model in higher dimensions. 

The model of Stanley et a1 is defined as follows. For Pblya’s walk on a periodic 
lattice of coordination number z, let (the random variable) S,  denote the number of 
distinct sites visited in a walk of duration N steps. In the model of Stanley et al, each 
realisation of the walk is assigned a statistical weight p S ~  = exp( -KSN) .  When K > 0 
(i.e. p < l),  walks in which few distinct sites are visited are favoured, while if K < 0 
(i.e. p >  11, walks with many distinct sites visited receive the greatest weight. The limit 
K + --CO corresponds to a self-avoiding walk, while K + CD returns a self-attracting 
walk; the ordinary P6lya walk is obtained by setting K = 0. If one defines a partition 
function 

z ( N ,  K )  = C exp(-KS,), 
all z N  walks 

the ensemble average of any function f (S , )  of S ,  becomes 
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In particular, 

( S N ) K  = -Z(N, K)-’ aZ(N, K ) / d K  = -8 log Z ( N ,  K ) / a K  (3) 

and 

( S : ) ,  = Z ( N ,  K)-’ a2Z(N, K ) / a K 2 .  (4) 
Stanley et a1 have sought the asymptotic values of Z(N,  K ) ,  ( S N ) K  and (Sk), in the 
limit of large N. In particular, when exp(-K) = p c ,  the percolation threshold of the 
lattice, they find dimension-independent growth exponents for the ensemble-averaged 
mean and variance of SN (for lattices of dimension a 2): 

h ( K )  = lim N-’ log Z ( N ,  K )  
N+m 

is approximately 3.4, independent of dimension. 
For a one-dimensional P6lya walk, the number of distinct sites visited, S,, differs 

by 1 from the span RN of the walk, defined as the difference in coordinates of the 
left-most and right-most sites visited after N steps: S ,  = RN + 1. Thus 

Z ( N ,  K )  = ( c exp(-KRN) 
all walks 

(7) 

where ( )o denotes the average with respect to the ordinary P6lya walk, i.e., in the 
case K = 0. Since the P6lya walk has the diffusion equation as its continuum limit, it 
is of interest to examine in place of (exp(-KR,)), the expected value of exp(-KR,), 
with R, the span at time t of the continuum diffusion process generated by the equation 
(a/at)p = $ ( a 2 / d x 2 ) p .  (We have set the value of the diffusion constant to $ without loss 
of generality.) Darling and Siegert (1953) have determined the probability density 
function + ( r ,  t )  for the span R,: 

Thesetwo everywhere convergent expansions for 4(  r, t ) ,  useful for r > J s  and 
r < J ( 2 t )  respectively, are related by theta function identities. We shall use them to 
determine the large t value of 

@(K,  t )  = e-,’d(r, t )  dr  (11) I: 
and thereby determine the limiting ‘connective constant’ 

A ( K )  = lim t-’ log @(K,  t )  
t -m 
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and also the mean ( R r ) K  and variance a: = (R:)K - (R: )K  via the equations 

(Rr)K =-@(K, ?)-’ d@(K, ?)/aK = - 8  log @(K,  ?)/aK, 

( R : ) ~  = @(K, t)-’ &(K, t)/aK’. 
(13) 

(14) 
(We note the classical results for K = 0: (Rt)o - { 8 t /  IT}”’, (R:)o - 4t log 2.) To analyse 
the large t behaviour of @(K,  t )  we split the integral in (11) into two parts, an ‘inner’ 
part @, which emphasises the behaviour of the integrand near r = 0, and an ‘outer’ 
part O0 which emphasises the large r behaviour: 

J Z j  m 

QI(K, t )  =I,, e-Kr4(r, t )  dr, @ O K  t )  = I,, e-Kwr, t )  dr. 

@dK, t ) a e x p ( l K I J m )  jo 4(r,  t )  dr<exp(lK)&%). (16) 

(15) 

The ‘self-repelling’ case (K < 0). The magnitude of O1 is easily estimated: 
J O  

We estimate Q0 by using the alternating series (9). For each fixed rsJ(2t ) ,  the 
sequence uj = j’ exp{-j2r2/(2t)} is strictly decreasing. The sum r#~( r, t) of the alternating 
series ZT=l(-l)j-luj can be bounded rigorously using a well known theorem (Apostol 
1974): 

In particular, taking n = 1,  we have 

-u24(r ,  t ) -ul<O 

and so 

Making the changes of variable r =&$a and r = 5 a  in the left and right integrals 
respectively and completing the square in the argument of the exponential, we find that 

and so as t + a, 

a0( r, t )  = 8 exp(fK ’ t ) [  1 + E ( t ) ]  (21) 
where E ( ? )  vanishes exponentially with t. Since 
rigorously that 

dominates a,, we have established 

@(K,  t )  - 8 exp($K’t), ?+CO, K < O ,  ( 2 2 )  
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and so the ‘connective constant’ (equation (12)) is 

A ( K )  = i K 2 ,  K < O .  (23) 

While it is not in general permissible to differentiate asymptotic equalities, the evident 
absence of oscillations in @(K, t )  enables us to differentiate (22) as often as we please, 
giving for the ensemble-averaged mean and variance of the span 

( R ) K  - IKlt, U: - t. (24) 

At fixed large time, the mean increases with IKI, but the variance is independent of IKI. 

The ‘self-attracting’ case (K > 0).  The magnitude of Q0 is easily estimated: 
- I-” - 

m0(K, t )  s exp[-KJ(2t)] 4(r,  t )  dr  = o(exp[-KJ(2t)]. (25) 
J 6 5  

To estimate O1, we use the series ( lo) ,  make the change of variables r = 5 J ( 2 t ) ,  and 
integrate by parts twice, giving 

- 
Q1(K, t )  =;? 2 exp{-KJi21)}O’(1)+2Xy!2t) exp{-KJi2I)}O(l) 

.rr 7T 

+% lo1 exp(-KJ=()@([) d5, 

where 

Appealing to absolute convergence, we may interchange the orders of summation and 
integration in equation (27) and deduce that 

where we have written f , ( [ )  = ~Ji2I)5+ . r r2( j+$)2 /52 .  
Since f , ( S )  attains its minimum at ti = {2.rr2(j+$)2}1’3{KJi21)}-1’3, we see that 

The large t behaviour of the integral in (28) is dominated by the behaviour of the 
j = 0 term in the sum, which is easily extracted via L d a c e ’ s  method (Olver 1974) 
after making the change of variables 5 = ( ~ * ’ ~ ) l ’ ~ ( K J ( 2 t ) ) - ~ / ~  

Inspecting equations ( 2 5 ) ,  (26), (29) and (30), we see that 
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and so 

log O ( K ~  t )  - -$(IT’~)’/~K’/~. (32) 

The connective constant vanishes: A ( K )  = 0 for K > 0; A ( K )  is therefore continuous 
for - m < K  <a, but has a discontinuous first derivative at K = O .  Differentiating 
equation (32) with respect to K,  we find the ensemble-averaged mean range to be 

f R J K  - ( 7r2t/K)’’3. (33) 

Although (R,)K is O(t1l3)  for all K > 0, the asymptotic relation is not uniform in K,  
and limr+m (R,)K/t’ /3  = ( I T ’ / K ) ~ / ~  diverges as K + O .  

We conclude with a few remarks on the relation between the continuum problem 
we have analysed and the discrete model of Stanley et al (1983), and on the qualitative 
features of the latter model. In the discrete model, since 2 s  SN s N + 1, we have the 
inequality z N  exp(-2K) > Z ( N ,  K )  > z N  exp[-(N - 1)K]  for K > 0, and the same 
relation with the signs reversed for K < 0, so that 

The continuous and discrete models differ in their behaviour for K -+ -CO, since the 
former gives a connective constant proportional to K 2 ,  while the latter gives a con- 
nective constant proportional to 1KI. This deviation can be attributed to the continuous 
model’s allowing rare excursions of order exceeding t in time t ;  no excursions exceeding 
N + 1 are possible in the discrete model. There is no such inconsistency between the 
continuous and discrete models for K > 0, so it is likely that in one dimension A ( K )  = 
log 2, and ( S N ) K  a 

The prospects for exact analysis of problems of the type considered by Stanley et 
a1 in higher dimensions seem remote, for the distribution of SN in P6lya’s walk is 
inadequately known. It has long been established (see, e.g. Montroll and Weiss 1965) 
that for d-dimensional hypercubic lattices, 

with R the probability of eventual return of the walker to the starting site. It is also 
known (Jain and Orey 1968, Jain and Pruitt 1971, Darling and Siegert 1953, Weiss 
and Rubin 1983) that 

( u2N d = l  
u2N?/log4N d = l  
u’N log N d = 3  

U: =(S~)o- (S , ) ; -  

d 2 4  

with U a lattice-dependent constant. The distribution of SN is known to obey the 
central limit theorem for d 2 3, so that within any finite interval -CuN < S ,  - ( S N ) , ,  < 
Cu,, it is permissible to replace the distribution of SN by a Gaussian. However the 
asymptotic forms of the distribution of S,  near 0 and near N do not appear to have 
been well characterised yet. If one assumes that the distribution is everywhere Gaussian 
(and this may be a rather poor approximation), one arrives at the following simple 
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expression for the partition function: 

Completing the square in the exponent, we see that the integrand attains its maximum 
at S* = (SNh0- KaL.  When d 3 4, S* lies well inside the integration interval when IKl 
is sufficiently small, and we arrive at the following approximation for the connective 
constant : 

A ( K )  - log 2 - ( 1  - R ) K  + i a 2 K 2 .  

The Gaussian ansatz also gives for the expected number of distinct sites visited 

i.e., it predicts a correction linear in K. These entirely heuristic arguments suggest 
that in sufficiently high dimensions, there is a finite range of values of K,  encompassing 
the origin, in which there is no change in the qualitative structure of the ensemble- 
averaged properties. One may then reasonably ask if there are phase transitions at 
finite values of K, or whether the condensed or expanded states are attained only in 
the limits K + oc and K + --CO respectively. 

After this letter was completed, the authors noticed a recent analysis by Redner 
and Kang (1983) of the one-dimensional discrete problem, using a transfer matrix 
formalism. They obtain expressions for the most probable value (in the ensemble) 
S,,, of the number of distinct sites visited: 

S n a x  - IK IN K < O ,  (39) 

S,,, - { N d /  K}”3 K > 0 ,  (40) 
and they argue that S,,, - ( S N ) K .  Their results agree with our continuum analysis if 
we replace N by t. However, their analysis for the repulsiwe ( K  < 0 )  discrete problem 
cannot be valid for large IK I since, as we have remarked above, SN d N + 1; this 
constraint is violated by (39) when K < -1.  It may require a somewhat careful and 
subtle analysis to see whether or not for the discrete problem there exists a phase 
transition at  a finite, negative value of K,  K,  (say). In other words, does ( S N ) K  - N 
for K < K,, or only in the limit K + -a? Redner and Kang note that a result equivalent 
to equation (32) follows from a theorem on ‘Wiener sausages’ due to Donsker and 
Varadhan (1975). 

The support of one of the authors (BDH) by a Queen Elizabeth I1 Fellowship is 
gratefully acknowledged. 
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